Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 246: 108052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350188

RESUMO

BACKGROUND AND OBJECTIVE: Atrial Fibrillation (AF) is a supraventricular tachyarrhythmia that can lead to thromboembolism, hearlt failure, ischemic stroke, and a decreased quality of life. Characterizing the locations where the mechanisms of AF are initialized and maintained is key to accomplishing an effective ablation of the targets, hence restoring sinus rhythm. Many methods have been investigated to locate such targets in a non-invasive way, such as Electrocardiographic Imaging, which enables an on-invasive and panoramic characterization of cardiac electrical activity using recording Body Surface Potentials (BSP) and a torso model of the patient. Nonetheless, this technique entails some major issues stemming from solving the inverse problem, which is known to be severely ill-posed. In this context, many machine learning and deep learning approaches aim to tackle the characterization and classification of AF targets to improve AF diagnosis and treatment. METHODS: In this work, we propose a method to locate AF drivers as a supervised classification problem. We employed a hybrid form of the convolutional-recurrent network which enables feature extraction and sequential data modeling utilizing labeled realistic computerized AF models. Thus, we used 16 AF electrograms, 1 atrium, and 10 torso geometries to compute the forward problem. Previously, the AF models were labeled by assigning each sample of the signals a region from the atria from 0 (no driver) to 7, according to the spatial location of the AF driver. The resulting 160 BSP signals, which resemble a 64-lead vest recording, are preprocessed and then introduced into the network following a 4-fold cross-validation in batches of 50 samples. RESULTS: The results show a mean accuracy of 74.75% among the 4 folds, with a better performance in detecting sinus rhythm, and drivers near the left superior pulmonary vein (R1), and right superior pulmonary vein (R3) whose mean sensitivity bounds around 84%-87%. Significantly good results are obtained in mean sensitivity (87%) and specificity (83%) in R1. CONCLUSIONS: Good results in R1 are highly convenient since AF drivers are commonly found in this area: the left atrial appendage, as suggested in some previous studies. These promising results indicate that using CNN-LSTM networks could lead to new strategies exploiting temporal correlations to address this challenge effectively.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Fibrilação Atrial/diagnóstico , Qualidade de Vida , Memória de Curto Prazo , Átrios do Coração/cirurgia , Redes Neurais de Computação , Ablação por Cateter/métodos
2.
IEEE Trans Biomed Eng ; 69(10): 3029-3038, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35294340

RESUMO

Electrocardiographic Imaging (ECGI) aims to estimate the intracardiac potentials noninvasively, hence allowing the clinicians to better visualize and understand many arrhythmia mechanisms. Most of the estimators of epicardial potentials use a signal model based on an estimated spatial transfer matrix together with Tikhonov regularization techniques, which works well specially in simulations, but it can give limited accuracy in some real data. Based on the quasielectrostatic potential superposition principle, we propose a simple signal model that supports the implementation of principled out-of-sample algorithms for several of the most widely used regularization criteria in ECGI problems, hence improving the generalization capabilities of several of the current estimation methods. Experiments on simple cases (cylindrical and Gaussian shapes scrutinizing fast and slow changes, respectively) and on real data (examples of torso tank measurements available from Utah University, and an animal torso and epicardium measurements available from Maastricht University, both in the EDGAR public repository) show that the superposition-based out-of-sample tuning of regularization parameters promotes stabilized estimation errors of the unknown source potentials, while slightly increasing the re-estimation error on the measured data, as natural in non-overfitted solutions. The superposition signal model can be used for designing adequate out-of-sample tuning of Tikhonov regularization techniques, and it can be taken into account when using other regularization techniques in current commercial systems and research toolboxes on ECGI.


Assuntos
Eletrocardiografia , Pericárdio , Algoritmos , Animais , Mapeamento Potencial de Superfície Corporal/métodos , Eletrocardiografia/métodos , Humanos , Distribuição Normal , Pericárdio/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...